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Introduction

Improvements in the timekeeping of marine chronometers ran into a problem at the end of the 
eighteenth century. The effect of variations in temperature on timekeeping had been almost eliminated 
by the use of compensation balances, but it was found that chronometers fitted with these could only be
brought to time at one or two temperatures.

It was found that a chronometer fitted with a compensation balance which was brought to time at a 
certain temperature would lose at all temperatures above or below this. If it was made to gain at the this
temperature it would then be correct at two temperatures, one above and one below. In the range 
between those two temperatures it would gain, the gain peaking at the middle temperature. At 
temperatures above or below this range it would lose. This phenomenon became known as “Middle 
Temperature Error” or MTE.

In this paper I don't attempt to discuss the history of marine chronometers. I will first briefly explain 
the two principal ways in which MTE was understood and explained, and then introduce a spreadsheet 
model that allows the user to explore the effects of the two different explanations.

Explanation 1: squares and square roots

The period “T” of a watch with an oscillator comprising a balance and balance spring is determined by 
the rotational inertia of the balance “I” and the couple exerted by the balance spring “S”. 

T=π √ IS (1)

A carbon steel balance spring gets weaker as temperature
increases, and the balance also expands slightly. The
weakening of the spring is bar far the great effect. If nothing
were done the watch would run slower as the temperature
increased.

A compensation balance as shown in Figure 1 has split
bimetallic rims that compensate for the weakening of the
balance spring by moving masses inwards to reduce the
rotational inertia of the balance. The opposite effects happen
if the temperature decreases. The angular position of the
masses is adjusted to alter the amount of compensation, the
distance that they move in or out in response to a change in
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Figure 1: Compensation balance



temperature. The screws at the end of the cross bar are the “mean time screws” which are adjusted to 
bring the watch to time.

Although it had been observed since the late eighteenth century, MTE was first described in print, 
though not explained, by the chronometer makers Arnold & Dent in 18331. An explanation for MTE 
was published in The Nautical Magazine of 18422 by Edward J. Dent of Arnold & Dent. A note in 
Shadwell3 says that this explanation had been given to Dent by the Reverend George Fisher, although 
Fisher’s name does not appear in the article. Fisher had got into hot water with the Astronomer Royal 
by publishing a paper suggesting that the rate of ships chronometers was affected by magnetism in iron 
ships. The Astronomer Royal, Sir George Airy, refuted this in such strong terms that Fisher, although he
continued to work on errors of chronometers, never published anything more. This is possibly why 
Fisher’s explanation of MTE was published under Dent’s name.

Dent gave the results of a test that he had conducted on a chronometer fitted with a glass disc balance, 
which indicated that the tension of the balance spring varied nearly linearly with temperature. He then 
illustrated the effect on the rate of a chronometer with Figure 2. The tension of the balance spring is 
represented by the straight line G Gʹ Gʺ. The chronometer is regulated to mean time at B and Bʺ. 

The rotational inertia of a balance is given by I = mk2, where m is the effective mass of the balance and 
k is the radial distance of that mass from the axis of rotation, usually taken for simplicity as the radial 
position of the compensation masses. This means that as the compensation masses move in response to 
changes in temperature, the effect on the inertia of the balance will be proportional to the square of k.

1 Arnold and Dent, The Nautical Magazine, London, Simpkin Marshall and Co. 1833, p. 224.

2 Dent, E. J., On the Errors of Chronometers, and a New Construction for the Compensation Balance, The Nautical 
Magazine, London, Simpkin Marshall and Co. 1842, p 760.

3 Shadwell, C. F. A, Notes on the Management of Chronometers (new ed), London, J. D. Potter, 1861, p18.
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Figure 2: Dent’s illustration



Dent represented the inertia of the balance as it changed with temperature as the curve D Dʹ Dʺ on the 
figure. The point Dʹ represents the inertia of the balance at the intermediate temperature Bʹ, but the 
point “m” is what the inertia would need to be if the ratio of spring tension to inertia was to be the same
as at B and Bʺ for the chronometer to go at mean time. Since Dʹ is less than it needs to be, the 
chronometer will gain, and will gain at all points where the inertia curve is below the straight line 
linking D and Dʺ.

This explanation was widely accepted. It is related by Commander Rupert Gould4 and illustrated with 
Figure 1, his figure 64. Like Dent, Gould considered the relationship of I to S given inside the square 
bracket of equation 1 above. The tension of the balance spring is represented by the straight line 
labelled the “S line”, the varying inertia of the balance by the curves labelled “I curves”.

4 Gould, R. T. with foreword by Betts J., The Marine Chronometer: Its History and Development, Antique Collectors' 
Club Ltd, 2013.
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Figure 3: Gould’s illustration



The same explanation was repeated by Rawlings5, with the difference
that he considered the full equation for the period given in equation 1,
including the square root, and not just the I and S terms inside the
square root. Since rotational inertia is given by mk2, when the
enveloping square root sign is taken into account the inertia of the
balance varies linearly with changes in the radial position of the
compensation masses, but in inverse proportion to the square root of the
couple of the spring. Figure 4 is Rawlings' plot the radial position “k”
of the masses as a straight line against the spring couple, which he calls
“Q”, as a square root curve.

Explanation 2: Material properties

In the early twentieth century, Charles-Edouard Guillaume6, the discoverer of Invar, gave another 
explanation for MTE, which he referred to as “secondary errors”, and also sometimes as “Dent’s error”.

Guillaume’s explanation is illustrated by Figure 5. The
horizontal axis labelled θ represents increasing
temperature. The vertical axis represents changes in
timekeeping, upwards for gaining and downward for
losing.

The curves OL and OA represent the thermal
expansion of the two parts of the bimetallic balance
rims, L for the brass (laiton) and A for the steel (acier).
These are curved because of non-linear effects in their
thermal expansion. The dotted line OB represents the
effect on the radius of gyration of the balance of the
expansion of the two metals fused together. Guillaume
explained that this is straight, because the quadratic
coefficients of brass and steel are virtually the same
and cancel each other out. This means that the
compensation masses are moved in or out in a direct
(linear) response to changes in temperature. 

The diagram is purely illustrative and is not to a consistent scale. The dotted line OB represents the 
difference between the expansion of brass and steel and should be well below the line OA. But if it was
placed there it would not visually balance the line OS to produce OM. 

5 Rawlings, A.L., The Science of Clocks and Watches 3rd ed, Timothy Treffry (ed). Upton, BHI, 1993.

6 Guillaume, C. E., Les Aciers Au Nickel, Annex to Horlogerie Théorique vol. 2, Grossman H and J., 1912.
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Figure 5: Guillaume’s explanation

Figure 4: Rawlings’ diagram



When I first saw this diagram I thought that
the straight dotted line OB could not possibly
arise from the curves OA and OL so I plotted
the three lines using data given by Guillaume.
The result is shown in Figure 6. The difference
between the curves of expansion of brass and
steel is indeed the straight line towards the
bottom of the plot.

The line OS on Figure 5 represents the
decrease in the force of the spring. This line
is also curved because of non-linear effects.
Guillaume must have deliberately represented the dotted line OB out of scale so that he could draw the 
OS line to a similar scale in order that the curvature in the OS line would be visible.

The line OM on Figure 5 represents the sum of the effect of the balance inertia OB and the spring 
couple OS and shows the secondary error or MTE.

Guillaume invented in 1899 a modified form of the split bimetallic compensation balance to counter 
MTE. He used a nickel-steel alloy with a negative coefficient of thermal expansion that made the line 
OA curve down. This resulted in the line OB taking a curved path that mirrored the shape of OS. This 
balance was called the “Anibal” or “integral”. MTE was almost completely eliminated in chronometers
equipped with these balances.

Which explanation is “correct”

Guillaume's explanation of MTE appears to have been virtually unknown or ignored in England, 
although it was correctly reported by Haswell7 in 1928. Perhaps this was because Guillaume did not 
mention the square/square root effect, which had provided an intellectually satisfactory explanation for 
many years. Gould was clearly aware of Guillaume's work but does not mention the explanation of 
MTE being due the elasticity of the balance spring varying in a non-linear way with temperature. 
Instead Gould explains that Guillaume's balance counters the square/square root effect, and this 
explanation is echoed by Rawlings.

The square/square root effect explanation was widely accepted as the sole cause of MTE, at least in the 
English speaking countries, until the late Peter Baxandall noted that it couldn't fully account for the 
magnitude of observed MTE. Philip Woodward made a note to this effect in the BHI reprint of 
Rawlings, and went into more detail in an article in the Horological Journal8 to which Jonathan Betts 
kindly drew to my attention.

7 Haswell, J. E. Horology (1928, supp. 1951), Wakefield, EP Publishing Ltd., 1976. p 159.

8 Woodward, P., Middle Temperature Error, The Horological Journal, Upton, BHI, April 2011.
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Figure 6: Differential expansion of brass & steel



Peter Baxandall must have realised that the curved lines drawn by Gould and Rawlings were 
exaggerated. The thermal coefficients of expansion and Young's modulus are very small, parts per 
million per degree C. And when coefficients are very small, their square roots do not behave as one 
might instinctively believe.

This peculiar behaviour of numbers close to unity was introduced to me quite casually in 1975 by my 
new boss on my first day in work. He was showing me a calculation for modelling hot CO2 flow in a 
gas cooled nuclear reactor and we got to a point where the square root of 1.02 was required. This was at
a time when pocket calculators were rare, but I had recently built one from a kit that I was rather proud 
of. Knowing that square roots are tricky I was reaching for my calculator when my boss simply wrote 
the answer as 1.01. This surprised me, I can still remember it clearly now. If it has a similar effect on 
you, just take a calculator and find the square root of 1.02. In the days before calculators were readily 
available, anything that simplified things was welcome, so it was useful to know that;

If x << 1, then √(1 + x) is approximately 1 + x/2.

This approximation gets more accurate as x gets smaller, because of course the square root of one is 
one itself. The important thing to notice is that 1 + x/2 is not a power expression but linear. The reason 
that this is important in the context of MTE is because we are dealing with small coefficients. For 
example, the temperature coefficient of Young's modulus quoted by Rawlings is 240 parts in a million 
per degree C. This means that the elastic modulus of a balance spring subject to a temperature range of 
+/- 20 degrees C will vary by a factor of 1.0048. 

This is where the illustrations of Dent, Gould and Rawlings fall down. Although the charts of Dent and 
Gould are unscaled, Rawlings' chart of k and √Q has a scale and it is totally unrealistic. Instead of 
plotting the square root of a realistic range of values of the variations in Q, which for a temperature 
range of +/- 20 degrees centigrade would ranging from 1.0048 to 0.9952, Rawlings’ chart shows the 
square roots of values from approximately 40 to 3. A nice curve for √Q is produced, which instinctively
“looks right” but does not represent the true shape of the √Q curve in a real chronometer.

I discovered this when I tried to reproduce Commander Gould's elegant chart of I curves against a 
straight S line, using a spreadsheet and realistic values for the coefficients of expansion and elasticity. 
The I curves looked like straight lines, and the 120 degree I curve plotted exactly on top of the S line 
and obscured it. There is a curvature to the I curves of course, but it is extremely small and produce an 
MTE that is much less than observed values.

Realising that the square/square root explanation does not explain all of the observed MTE, although it 
undoubtedly does exist, Guillaume's explanation that the elasticity of the spring does not vary linearly 
with temperature becomes significant. In his HJ article Philip Woodward found that a value of 
220 x 10-9 for the coefficient of curvature, called the “quadratic coefficient”, in the elasticity of the 
balance spring was sufficient to explain the “missing” MTE. At first glance it seems that such a small 
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number cannot have such a large effect. The spreadsheet that accompanies this article is intended to 
help the reader to investigate this effect.

Use of the spreadsheet

The spreadsheet is a very simple and theoretical model of a balance and balance spring using the 
methods explained in the appendix. It is not intended to model any real chronometer but simply to 
allow the effects of temperature on the balance and spring to be investigated. 

The spreadsheet has three main areas. At the upper left is the “Input data” area. The cells outlined in 
green are the ones intended to be edited by the user. Below the input area the “Calculations” section 
shows the results of the calculations numerically. The two calculation sections show the changes in 
balance inertia I, spring torque S, and daily rate, over two ranges; plus and minus twenty degrees 
centigrade, and plus and minus one degree.  To the right the results are displayed as two charts. The 
upper is a plot of I and S against temperature, imitating Commander Gould’s diagram. The lower chart 
is a plot of daily rate against temperature.

First steps

As supplied the spreadsheet is showing the effect of temperature on an uncompensated watch with a 
steel balance. The error for a temperature change of one degree C is just under 10 seconds per day. 

To investigate the effect of a brass balance, the expansion coefficient for the balance should be changed
to that of brass, i.e. 19.0 x 10-6/ºC. The calculation in section 2.2 should then show the 10½ seconds per
degree centigrade observed by Berthoud and analysed by Rawlings. Although the thermal expansion 
coefficients of brass and steel are considerably different, the effect on timekeeping is quite small. It is 
the variation in the elasticity of the balance spring that has the major effect.

Marine chronometer

To investigate temperature effects in a marine chronometer with a bimetallic compensation balance 
such as shown in Figure 1, first the expansion coefficient of the balance should be reset to steel, i.e. 
11.0 x 10-6/ºC. This determines the thermal expansion of the balance cross bar.

The "Compensation coefficient" is a measure of the rate at which the compensation masses are moved 
in or out by the bimetallic rim. This is not a material property but emerges from the design of the 
bimetallic balance itself, the diameter of the balance, thickness and proportions of the bimetallic rims, 
and the compensation masses. This is pre-set to 114.5 x 10-6, a value determined using a method similar
to that outlined by Philip Woodward to give optimum compensation for this model, much as the 
manufacturer of a real chronometer would have arrived at, no doubt by much sweat and tears.

The “Compensation mass angle” is the angular distance of the compensation masses from the centre 
line of the cross bar of the balance in degrees, as shown in Figure 1.

When the compensation mass angle is zero, the compensation masses are at the roots of the bimetallic 
arms, next to the cross bar, where they provide no effect for changes in temperature. 

16



Increasing the compensation mass angle angle has the same effect as sliding the compensation masses 
around the rims, away from the cross bar and towards the free ends. The greater the angle, the further 
the masses are along the bimetallic rims, which increases the distance they move in or out for a certain 
change in temperature, and therefore the amount of compensation.

Commander Gould plots “I curves” for compensation mass angles of 30, 60, 90, 120 and 150 degrees. 
If you put these values, one after another starting with 30, into the green box to the right of 
“Compensation mass angle (degrees):”, the red "I curve" of the upper chart will incrementally swing 
round towards the yellow "S line", similar to Gould's illustration.

The I curve is calculated by the spreadsheet using the square of the radial position of the compensation 
masses, so it is truly a curve. But because of the small coefficient, it appears to be pretty well straight. 
When optimum compensation is achieved with the masses at 120 degrees, the red I curve disappears 
behind the yellow S line. This shows just how straight the I curve is, it can completely hide behind the 
S line!

As the compensation mass angle is increased the effect of the increasing compensation can be seen in 
the scale of the y axis of the plot on lower rate chart. At first it drops from hundreds to tens of seconds 
per day, and then when the compensation reaches the optimum it switches from a straight line to a 
curve, and the scale change to fractions of seconds per day. The curve shows the effect of the square of 
the radius of gyration in the balance inertia which is not visible in the I versus S plot, although it is 
really there.

As supplied the value for the “Mean time screws” is set to zero. The mean time screws can be 
“adjusted” by entering a value in seconds to bring the rate to zero, say at 5ºC and 35ºC – try starting at 
0.15 and then tweaking the value slightly. This reveals the MTE effect, the rate gaining between 5ºC 
and 35ºC and losing outside that range, but the magnitude of the MTE is less than seen in practice.

As Guillaume noted, the change in the elastic modulus of steel with temperature means that the S line 
is not actually linear but has a curve. Curvature can be added to the S line by altering the quadratic 
coefficient in the upper green box.

I find that a value for the quadratic coefficient of 240.0 x 10-9 requires an adjustment to the mean time 
screw value to bring the rate to zero at 5ºC and 35ºC of about 2½ seconds per day, about what is found 
in practice. With this value the yellow S line becomes sufficiently curved that the red I curve becomes 
partially visible at either end.

This reveals graphically the answer to the question of which explanation is correct: they both are. The 
pure geometry square/square root explanation is intellectually satisfactory and correct, but the 
magnitude of the MTE it produces is small. The non-linearity in the spring curve is small, but it 
provides the balance of the MTE that is observed. In a compensation balance, both effects are at work.
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Data sources

The coefficients of thermal expansion of brass and steel (19.0E-06 and 11.0E-06 respectively) and the 
linear coefficient of the elastic modulus, 240.0E-06, are from Rawlings. They are similar to other 
published data for steel, although figures vary depending on the composition and treatment of the steel. 
These values must therefore be taken as representative rather than exact.

I found that a quadratic coefficient for the Young’s modulus of the balance spring of 240.0E-09 gives a 
middle temperature error of about 2.5 seconds per day. This is similar to the  220.0E-09 used by Philip 
Woodward in his HJ article, the small difference is because my model incorporates the effect of 
temperature on the balance spoke and the thickness of the spring. Published data on quadratic 
coefficients, especially in the room temperature range, is essentially non-existent, but these values are 
consistent with what data I have found. I asked the British National Physical Laboratory to help me 
find data for the quadratic coefficient of carbon spring steel. Their resident expert9 told me that 
although data for the linear coefficients is readily available, data on quadratic coefficients is rare 
because it is very dependent on the exact material composition and treatment.

Dent’s data

Dent conducted experiments on a marine chronometer fitted with a glass disc balance. These 
experiments have been said to show that the elastic modulus varied linearly with temperature but Dent 
was rather more circumspect, saying that "... the force of tension varies very nearly as the temperature 
within ordinary limits …" The results from these experiments, although only three data points, does 
exhibit a slight curve. I found that using a linear coefficient of 223.0E-06 and a quadratic coefficient of 
690.0E-09 for the elastic modulus of the balance spring gives a curve that is good fit to Dent’s data, 
which is of the same order of magnitude as Woodward’s figure.

Real life

Both Dent and Gould considered whether the path taken by the compensation masses has an effect. It 
cannot be exactly radial as the spreadsheet model assumes. However, the masses do not move very far.

Britten10 gives data for several marine chronometers. The balance diameters are around 1.2 inches or 
30mm. Taking the compensation coefficient used in the spreadsheet model, 114.5 x 10-6, the 
compensation masses of such balances would move approximately 0.0017mm in or out per degree 
centigrade of temperature change. 

For a temperature change of 20 degrees centigrade this would result in a total movement in or out of 
about 0.034mm. For comparison, the thickness of a human hair is around 0.06 to 0.08 mm. With such a
small movement I wouldn’t think that the exact path has much effect. This also gives an insight into 
how exacting the construction and adjustment of such chronometers must have been.

9 Morrell, R. Private communication, National Physical Laboratory Materials Division, Teddington, 2014

10 Good, R., Britten’s Clock & Watchmaker’s Handbook 16 ed., London, Eyre Metheun, 1978
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Finally

Who first observed MTE? Guillaume says it was Berthoud. Commander Gould says that it can’t have 
been Berthoud, because his chronometer didn’t have a split bimetallic compensation balance and 
therefore could not experience the square/square root effect. But there can be little doubt that Berthoud 
had observed the MTE due to the non linearity in the variation of elasticity of steel with temperature as 
described by Guillaume, and therefore Berthoud was the first observer.

Appendix: Derivation of spreadsheet equations
The basic equation for the period of a balance controlled timekeeper is

T=π √ IS
Expanding this to show the individual components gives

T=π √ mk
212l

t 3Eb

Where m is the mass of the balance, k is its radius of gyration, l, b and t are the length breadth and 
thickness of the balance spring, and E is the modulus of elasticity, Young’s modulus, of the balance 
spring material. The 12 is a constant arising from the beam theory of bending.

Some of these terms are not affected by changes in temperature, i.e. the numerical constants, the mass 
of the balance, and the ratio of the length to breadth of the balance spring (both will change but in the 
same proportion) so we can separate these from the terms that are affected by changes in temperature as
follows

T=π √m12 l
b √ k

2

t 3E
 or T=const√ k2

t 3E

Effects of temperature

There are two effects of temperature on the radius of gyration. Thermal expansion or contraction will 
change the length of the balance spoke or cross bar and thus the radius of gyration. In a temperature 
compensation balance, the radius of gyration will change as the bimetallic rims move the compensation
masses in or out. These effects can be represented for a temperature rise of h degrees as

kh=k+k α bh−k c h   or  k h=k (1+αbh−ch)

Where “αb” is the coefficient of thermal expansion of the balance spoke material and “c” is the 
coefficient of compensation, the rate at which the compensation masses move in or out in response to 
changes in temperature.
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The spring thickness will vary as

t h=t (1+α sh)

Where “αs” is the coefficient of thermal expansion of the balance spring material.

The modulus of elasticity decreases with temperature. For many years this was thought to be linear, but
it is known that it actually follows a curve. This can be represented by

Eh=E (1−bh−qh2)

where “b” is the thermal coefficient of the modulus of elasticity as discussed by Rawlings and others. 

The curve in the thermal response of the coefficient of elasticity can be represented by the second order
term in equation 6. The quadratic h2 term gives a curvature, the quadratic coefficient “q” determines the
strength of the curve. 

The modulus of elasticity decreases with increasing temperature, hence the negative signs, and the rate 
of decrease increases as the temperature increases.

The change in period due to a temperature change h can therefore be written as

T h=const √ (k (1+α h−ch) )
2

(t (1+α h))
3 (E (1−bh−qh2 ))

The initial value of T gives 86,400 seconds in 24 hours. The ratio of Th to T determines how many 
seconds the period Th will make in 24 hours. I have not shown it in full, but the ratio of Th to T can be 
shown to be

T h/T=√ (1+α h−c h)
2

(1+α h)
3 (1−bh−qh2)

The change in period of a watch that is keeping time at a certain temperature, when subjected to a 
change in temperature h, is determined purely by the thermal coefficients of the components that 
change their size or strength as a result of that temperature change. This follows the method of Philip 
Woodward but I have kept the effects of the thickening of the balance spring and weakening of its 
elasticity separate.

Once the change in period is known, what this means in terms of seconds per day lost or gained can be 
calculated, even without knowing the actual period. 

The initial period of the watch when it has been brought to time must result in its counting 86,400 
seconds per day. If, for example, the period is shorter and the ratio works out to be 0.9995, then the 
watch will count 86,400 x 1/0.9995 = 86,443.2 seconds, a gain of 43.2 seconds in 24 hours.
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