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SUMMARY.—A new method for solving a quasi-linear equation of the form 47 — x — uf %)z 1s
proposed. The solution of the first approximation i1s obtained: it is compared with those given by
othersh®%* and found to be identical with them. The method is applied then to the second approxi-

mation and yields the interdependence between the amplitude and instantaneous frequency during the
transient period. Finally, the effect of the harmonic content is calculated in the transient state as well
as 1n the steady-state. The results are applied to a thermionic generator. '

1. Introduction
N this paper an attempt is made to solve a
- § non-linear equation of the form

d%x L adx ,
g2 = () 77 . . 1)

where p 1s a real number assumed to be small
compared with unity, and where f(x) is an
analytical function of x. This equation represents
a typical and general class of non-linear differ-
ential equations encountered in electrical
circuits containing a non-linear dissipative ele-
ment. Inmany applications, however, the original
equation obtained directly from the circuit is of
the integral form of the above, viz.,

— -t Jvdi =pF(x) .. N )
where
Flx) = ff(;t:)d:{: .. . . (3)

F{x) represents the current-voltage characteristic
of the non-linear resistive element. As will be
seen from the application given at the end of this

aper, no constant term appears in this orieinal
» &

equation. But generally this integro-differential
equation 1s not suitable because of the integral
term. Therefore, it is usually differentiated with
respect to f. "This leads to the equation (1) which
1s a special type of the more general non-linear
differential equation

aA2x dx
e | ngf<:¥;_, d_zf> . . (4)

For this equation there exist several quantitative
methods yielding approximate solutions.

In these methods it is generally assumed that
the solution of the equation is of the form

x =asin {{ 4 6)

where a and 6 are unknown functions of £ (For
the sake of simplicity of expressions one sets
w = 1, hence works with the normalized fre-

(5a)
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quency; see later.) It is obvious that this is

equivalent to |

¥ =08t -+ b, cost

(5D)
where 6, and b, are again functions of . Either of
these solutions is substituted into the equation (1)
and by this means two auxiliary equations are
obtained from which a, 6 or b,, b, can be found.
In this paper the same procedure will be
followed, but the solution of 5(a) or 5(b) will be

substituted into the equation (2) instead of into
equation (1),

2. First Approximation
It the solution of the form 5(a) is substituted
1nto (2) the first term becomes

ax da . a6

EE-——EEH(Z—{*@)%@(l dt)cos(t#— 0) (6)

For the second term the integral | @ sin
({ + 0)dt must be evaluated. For this case,
however, it 1s more convenient to use the solution
of the form 5(b}; e.g.,

J(bysint 4 b, cos f)dt = — b, cost -+ b, sin ¢
— [ 0" sintdt + bysint 4 b, cos ¢
— [ "5 cos t dt (7a)
or

J by + 0" sint - (by + D”,) cos £1dt
=(— by +b'y)cost+ (by+ b)) sint  (Th)

where the dashes show the derivatives with respect
to . So far no assumption has been made about
by and by. Now it is assumed that &, and b, vary
slowly with time. As will be seen later, the second
derivatives of b, and b, are of the order of u2 As
a first approximation 4", and 4", will be neglected
1 comparison with 4, and b,,.

Substituting b, = a cos 8, b, = a sin 6 into (7)
there results

fasin(t+9)dé:<—a+a§§ cos {¢ -+ 0
| ;Zfsin(é—} 0 .. . (8
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The third term gives:
Ilasin (¢t + 0)] = ¢,(a) sin (t + 6) +
Pala@) SN (28 + O)] + . . . 4 Pyla) + -
pi{a) cos (£ + 0) 4 dy(a) cos [2( + 0)] + (9)

where ¢;,s; are Fourier coefficients of the function
Fla sin u).
By combining the equations (2}, (6), (8) and (9)

and equating the coefficients of sin J(zf ¢) and
cos (¢ + ¢) one obtains
da A
=L 10)
ae
- =5t(@) 1
where
1 27
brla) = 5= f I{a s w) sin u du (12a)
=TT {)
1 2%
i (a) = 5 ( Flasmu)cosudu =0 (12b)
T J 0
Here all the harmonic terms have been dis-
regarded.

The equations {10) and (11) are the auxiliary
equations from which a and 6 are to be solved.
From (12b) it follows that 40/df = 0; this means
that the instantaneous frequency does not change
with time.

The equations (10) and (11) are identical with
those obtained in a different way by Kryloff and
Bogoliuboft.? Nothing will be said in this paper
about the stability of this solution since this
question 1s widely investigated in the book just
mentioned and also in that by Minorsky.®? But
1t must be recalled that the equations are obtained
by 1gnoring second derivatives in (7b) and the
harmonics 1n (9). The constant term in (9)
represents the well-known detection current due
even power terms in f(x). This is also ignored
since only the oscillatory solution is considered in
his treatment.

3. Second Approximation

To illustrate the eftect of the second derivatives
2t the amplitude, the normal linear differential
-quation will be first discussed. If it is assumed,
“hat in the equations (2) and (9) F(x) = x, then
rom equations (10) and (11) there follows:
da a0
—_— — ’ i — )
AR
2 a and ¢ are solved from these equatiens and
-1bstituted mn (5a) one obtains

x = C el2sin (f 4 0,
nere C and 8, are the constants of integration.

2 the other hand the exact solution of the linear
_terential equation

(13)
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14)

xﬂ_[_j::#x

1s known to be
<\/ >f - - 9

The two solutions (15) and d1ffer in the
frequency. This dlfference cannot be due to the
neglect of harmonics, because there are no har-
monics mn.a linear circuit. Hence the discrepancy
can only be due to the neglect of the second
derivative in equation (7b). To prove this point a
solution of the form x =asin{wf+ 6, is
substituted in the above hinear equation. In this
solution w and ¢, are constants and a 1s a function
of time which can easily be determined.

The result 1s

x = Cetl2 sin

(15)

16)

From this it follows that the frequency of linear
oscitlations depends on the second derivative of
the amplitude. It also follows that the solution of
the first approximation (14) 1s accurate as far as
the amplitude 1s concerned.

I1 the second derivatives are to be taken into
account, integration by parts must be carried one
stage further than is done in (7a). Hence

[(bysint L b, cost)ydt = — bycost + b’ sin¢
+ 0" cost — [b'" costdt + bysint
—b'scost — b'ysint + [0 sintdt  (17)
| by — 0" ) sin ¢ -+ (b, + &'",) cos ] dt
= (— b, +b"; + b’,) cost
+ (b’ 4 by — D75) sin ¢ (18)
[t 1s assumed that
Z)J’H L
< <1 an %—l < 1
2
This means that the third derivatives can be
‘neglected 1n comparison with the original

functions. Substituting in (18) 6, = a cos § and
by, == a sin 0

['asin (f 4

cos (¢ +

O\dt = (— a -+ af’ 4 a” — af’?)
0} — (@’ — 2a'8" — a0") sin (£ + 0)
- (19

The evaluation of this 1nteg1 al 1s given in Appen-
dix 1.

By combining the equations (2}, (6), (9) and
(19), and equating the coefficients of sin and cos
terms one obtains |

da 11d<2(26
il 2adi\" ar

— 5 ¢ (a) (20)
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<d9>2 5 ag 1d%a
at /  “dt  adf

Smce the first approximation has been found
sufficiently accurate for obtaining the amplitude,
the second term in (20) will be ignored. The first
term 1n (21) will also be neglected since (46/d#)2 is
of the order of u*.

Instead of using equations (10) and (11) @ and 4
are solved from the equations

aa

21)

70 gﬁf’l(ﬁ) - (22)
a0 11 d2a

Y LLed D
dt 2 a dt‘z & [ ] & - [ 1 [ | ( 3)

and the values obtained substituted into x = a
sin (¢ + #). Thus an improved solution is found.
TI'he 1instantaneous frequency is obtained by
differentiating (¢ -+ 6) with respect to ¢

whence | |

(24)

It must be realized that w is the normalized

frequency; i.e., w,® =1/LC is supposed to be

unity. By substituting d4%a/df? from (22), one
obtains
* 0 di(a) -
_ K 1 5%
w =1 3 0,(a) 7 (25)

4. Effect of Harmoniecs

It 1s seen from the equation (25) that the in-

fluence of the amplitude wvariations on the
frequency is of the order of 42. On the other hand,
1t has been shown by Kryloff and Bogoliuboff2
that the reduction in the frequency due to the
- harmonics 1s also of the order of u2. It follows that
to 1gnore the harmonics as done in the previous
section 1s not justified if one is interested in
frequency changes of the order of u2 It is the
purpose of this section to take into account the
harmonics as well as the second derivatives.
- For the sake of simplicity it will be assumed
that F(x) is an odd function of x; i.e., that
F(x) = — I'(— x). In this case the Fourier
series of ['(a sin u) contains, as can easily be
seen, only odd sine terms. Hence

Flasinu) = ¢(a) sin u + ¢,(a) sin 3u
+ ¢.(a) sin ba + . . . (26)

It 1s also assumed that in the solution only the

third harmonic is pronounced. Then the solution
will be of the form

x =asin (¢ ++ 0) 4 bcos [3(¢ + «)] ..
where a, §, b and « are functions of time. It must
be borne in mind that de/d¢ may not be equal to

d8/at during the transient period whereas it is
known to be so for the stationary oscillations.
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27)

As done previously, the expression (27) for x
must be substituted in equation (2).
Then the first term is

%hfgsin(i%-@)—f—a(l } Zf)coa ¢ -+ 6)
ad s\ |
| dﬁb GOS [3(¢ + «)] — 30 <1 | §;> sin [3(F + «)]

(28)

With the help of the formula given in Appendix 1
the second term becomes

[#dt = (— a + ab’ + a”) cos (t -+ 6)

+ asin (¢t + 6) +-§(1 — o/} sin [3( 4 o)]

'[ 9
When evaluating this integral the second deriva-
tives of the third harmonic are neglected because
these quantities which are small in themselves
appear with a factor 1/9. '
The third term in equation (2) requires a
comparatively longer calculation. At this stage it
1s assumed that the amplitude of the third

harmonic is small in comparison with that of the
fundamental. It follows from this that

tlasin (¢ + 0) + b cos 3(t + )] ~ Fla sin
L dffasin (1 + 0)]

cos 3t + o)} .. (29)

4 A1 4
&+ 0)] - dasn ¢+ 0)] bcos 3 [(Z+ o]
. . (30)
If the function ali{a > “) 1s expanded into a
d(a sin u)

Fourier series

dF(a sl
d(r:(jsinj) = o(a) + Py(a) cos 2u

- %(d) cos 4y + - - - (31)

Lthe coefficients can be calculated in terms of
those that are already determined in equation (26).
If the equation (26) is differentiated with respect
to # one obtains

dF(c;zm “) = d[gziiﬁ;g)l z)] @ COS 1t = ¢,(a) cos u
+ d¢pg(a) cos 3u + S (a) cos by 4+ - -
Dividing this by (a cos %), evaluating the terms
COS 3%  COS Hut

COSu = CcoSu
and combining it with (31) gives (see Appendix 2)

bol@) = [1{a) — 344(a) + Sgla) . .

* 2

bo(a) = [345(a) — 5dgla) -+ . . 32)
Ja(@) = [3dyla) — Tdyla) + . . ]
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Cdmbining the equations (27), (31) and (2) and
denoting 3(8 — «) by & gives

—

F(s) =| #1(e) -+ 5 [fale) — yfe)] sin 5 | sin (¢ 4

L

-+ 32@53(41) COS 0 | cos (t + ) - ﬂb%(@) |

. é%(gg) cos 20 + é,(a) sin 8_ cos 3 (£ + o)
+ | dg(a) cos & M;(a) sin 26 | s 3(f + «)

(53)

Finally, the equations (28), (29) and (33) are
substituted into (2) and sin and cos terms are
equated. Then

6 _ _1d% 3 ¢a)

= " Baap TakT, o088 (34)

da _pl ; S _,

i 9 I_‘?()l(ﬂ) + p [‘Jbz(@) — l,b,i(fl)] Sin 3_ (35)

4  da 3 |

b(ﬁ | dt> - 10#‘?53(@) COS 0 —i—‘%b fiela) sin 26
(36)

ab 9 7 -

i~ 10* bysp(@) + ¢gla) sin § — Q“yi’e(@) COS 25_
(37)

From these equations a, #, b and « can be found.

In equation (35) the last term shows the effect of
the third harmonic on the amplitude of funda-
mental frequency. As will be seen from the
formulae (39) and (42), obtained below for » and
o, the magnitude of the second term is of the order
of u* and, therefore, can be neglected.
The same applies to d«/dt and to the last term
in (36). Hence equation (35) gives
aa
- =54(4)

from which a can be found as a function of time,
and (36) gives b in terms of a; i.e.,

b= — § uopsla) (39)

Here cos ¢ is set equal to unity. The error due to
this approximation is of the order of u? because §
1s proportional to u.

The change in the frequency of the fundamental

is obtained by combining the equations (34) and
(39), whence

(38)

a6 1 d?a 452

| at 2a dr? a?
The first term on the right-hand side of (40) is the
change due to the varying amplitude and there-
fore applies only to the transient period. The
second term shows the effect of the third harmonic.

L+ (40)
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The change in the frequency of the third harmonic
(1.e., da/dt) will now be found.

It seems appropriate to evaluate d§/d¢ rather
than d«/di, because the former gives, during the
transient period, the deviation of the ‘third
harmonic’ from three times the fundamental fre-
quency. For the stationary oscillations it 1is
known that this deviation is zero. It must be
recalled that o was equal to 3(6 — «) and con-

sequently

ao a6 do

T <dz; dz) (412
Or

4o

where the subscripts f and % refer to fundamental
and harmonic respectively.

By differentiating equation (39) with respect
to ¢ and substituting da/df from (38) one obtains

% = 136 p? dquf) b1(a)
Combining this with (37) gives
= suleila) — 3dgla) + S¢sla)]
5 ¢y(a) désla)
24" $.(a) ~ da

With the help of the equations (38), (39), (40) and
(42) one can determine the unknown quantities in
(27) and thus obtain the solution required.

(42)

5. Application

Consider a valve
oscillator with a

tuned anode cir-
cutt (Fig. 1). The
currents 1in the

Vig. 1. Valve oscillator
with tuned-anode
Crycuit.

circuit are expressed in terms of the p.d. v
across C as follows:—
V av

iR:E;@fC:CE;IL:IO_[_?jL

}Jﬂ.fﬁ Io = f(va + uvg)  (43)

where 7, 1s the d.c. component of the current in
the inductance and where the function (v, -
uvg) shows the non-linear valve characteristic.
vq stands tfor the effective anode voltage; i.e.,
g = L — 1. |

=7,

M .
— — ¢ One can wrte

Remembering that v, =

I, as follows




< M >
where R = | u 7 1

Kirchhoff’s equation for the currents gives

ic —1pr — 11 = Ig
or

1
i

%',;; T 'E:E ——' ’3:1 — I{E — IO — 3.:13 (44?]

where 75 and 7z are the varving components of the -

currents mn the valve and in the inductor respec-
tively.

2

2y
72

2

<,

3

0 ,
¢

Fig. 2. This curve vepresents equation (31} for the triode

oscillator undey consideration,

Since £ 1s a constant voltage, 7, can be expressed
as a tunction of v; i.e.,

la= Q(V) . .. (45)
By substituting from (43) into (44) and
denoting
1 Y N
o —(;S(d) % by wf'(v) one obtains
dv
7 - [vdt = wF(v) (46)

where ¢ 1s the normalized time: ie. ¢ — w,T, and
cul}g — I/LC.

It 1s assumed now that the characteristic of the
non-linear resistive element takes the form

Flo) = vl — yo?)
For v = a sin u (47) becomes

47

3
Flasinu) = a(l — 3ya?) sin « -- £ z sin 31t (48)
Thus, the coefficients in equation (26) are now
: a?’\ |
pi(a) = a <1 - 2)
075 49)
I a3
byla) = 3 ﬁ_{}{g ,,,
where a,? = 4/3y.
From (38) it follows that
da a2 > o
- =5a (1 %2) (30)
From (50)
20 -
- 1+ Caye M (o1
202

where ¢ 1s the constant of integration. For large

values of ¢, ¢ approaches a,, the amplitude of the
steady-state oscillation.

For the amplitude of the third harmonic,
equation (39) gives
poa’
8 4,7
I'he instantaneous angular frequency of the
fundamental is obtained from (40) as follows

- af 1 d?a  u* a*
dt 2a. di? 16 ayt
or, evaluating d*a d#* from (50),

2 2N\ 2 |
DR
8 a o o 16 a,

It must be recalled that w shows the normalized
frequency. The curves representing equations (51)
and (54) are shown in Figs. 2 and 3 respectively.
From the graph it is seen that the frequency of

oscillation is at first smaller and then larger than
the steady-state value.

b=

52)

w = 1

(53)

w = 1

0 0143 0371 D572

(&)

big. 3. Equation (34) produces this curve for the example
considered.,

0773

Lo find the frequency of the ‘3rd harmonic’,
equation (42) must be investigated. By sub-
stituting the terms ¢,(a) and ¢4(a) from (49) into
(42) one obtains

pl, | @ -
Difterentiating (55) with respect to ¢,
- dad ,
77 — 3(Uf — Wh, V1Z.,
a4 u? a® < a'3> .
it 8 5 : 1" (56)

Ao . [ a®

as a function of <-E£——> It
at | >
follows that the frequency of the ‘3rd harmonic’ is

shightly larger than three times that of the funda-
mental during transient time.

P

Fig. 5 represents the amplitude of the ‘3rd

Fig. 4 shows
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harmonic’ as a function of (@/ay)? during transient
time.

The solution for the steady-state oscillation is
obtained by replacing a by a, in equations (52),

(94) and (55).
Hence

. B [.Lz\ ]
v = a, sin <1 /]i—}—@o

_ , _
S COoSs 3 (1 H%>zf~f— @U+§ (D7)

With the exception of the last term /8 this
solution is identical with +hat obtained by
Kryloff and Bogoliuboft.

3
2 Fig. 4
T ig.
S ?/—7\
0 0-5 I
a\?
(Qﬂ)
(
g %o

(&)

Fig. 4 (above). Relation betroees, a9 'dt and a* q,?.
Fig. 5 (below). “mplitude of “‘third harmionic’

6. Conclusion

Lhe use of the integro-differential equation has
made it possible to deal more rigorously than
betore with conditions during transient period.
The resultant formulae applv to the circuits
“ontaming the non-linear resistive element, whose
-urrent-voltage characteristic is an odd function.
Amplitude and frequency of the fundamental and
»rd harmonic’ are obtained both for the transient
veriod and for the steady-state. The method can

e applied to a resistive characteristic 0f a more
eneral nature.
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APPENDIX 1

o evaluate the integral ft’i’ s F — 47 it iz con-
- -alent to define a complex function X =— 428
—Ince

ffl Sin (¢ — 6 di — Imag. [ foff ?]

L=

~Tzgrating the latter OV Darts
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erﬁdr = (— X = X' L jX"eit L ij”"fﬂfizf.
Neglecting 7 X/ in comparison with X
[Xettar = (— jx + x7 . X" edt.
Substituting X = e in the last equation

> . - : | o o, y
Xelldt = " — jg - g7 —Jal’ 4 jla” -+ 12a'0"
: ' 2 AN T JE 2
- jgﬁ' — af )__g.:?f -+ U
Ji—a — ab’ ~ g" — af’2leie+86)
—a’ — 2a’0" — af"eit+6)

-_

|

Retaining only Imaginary terms gives
[asin ¢+ 6 dr— — 4 40 +a” — ab’¥ cos (¢ + 6)
— a’ — 2a’8’ — a”] sin (7 +— )

APPENDIX 2
Let the function Flasinu) be an odd function of
@ s . Then -
Flasin u) = ¢ (a) sin 1 — ¢s(a) sin 3u
P

Differentiation with respect to u gives

d F{a sin u) d F(a sin u) (@) co
p— , d COS 14 — (d; COS ¥4
dit d{a sin ) ?1 |

(@) sin 32 - .

Dividing by {a cos 1) gives

di{asinu)  &,(a) g bs(a) cos 3u
dlasinu) g a  -cos
: ®5(a) cos Hu

&  COS u
On the other hand
COS {27 — 1)1t = cos 1 cos 2k — sin Sin 2ku
= COS 1 COS 2k — L7cos (2P — L) — cos (28 — 1))
Hence
Cos (2R - 1)y

COS ¢

COS (2 — Du
COS 1

= 2 Cc0s 2k —

This recurrence formula givesfork =0,1 2

|l =1
COS 314
= 2 cos 2y — 1
COS ¢
COS His .
= 2 cos 414 — 2 cos Dy — 1
COS 1f
COS 71t |
— = 208 61 — 2 cos 4y — 2cos 2y — 1
COS U

Substituting these exXpressions in (1) one obtains
dFa sin it i

(7i¢ SIN g a -t At SEANY SRR
.}
= 5 S0l — 3dgla) — Tdola) — - COos 2u
g : : T ; B
)
— = oglar — b a) —~ {}C!J'E'lfﬁ Ccos 41 =
T ) -

REFERENCES

- Tzeory of Oscillations”) A Andronae andd C. E. Chaikin, edited and
Tend, by 8. Lefsckerz, Princeton University Press, New Jersey, 1940,

- UIntreduction to Non-Lirear Mechanics”, N, Krvloff and Bogoliuboff,
Tals, oy 8. Lefschetz, Princeron Lriversity Press, New Jersev, 1043,

*rUimrcdusiticon o Non-Linear Mechanies™, N, Minorsky; 7. W Edwards,
ami o Arizy 1047,

*“Feorzed Oscilations in Nom-Lincar >vatems”, M. L. Cartwright: see
Czzpier IV of “Consribusicns to <he Taeory of Non-Linear Qzeillations *’
€CITEC TV B, Lefscherz Princeran University Press, New Jerzev, 19350,

-

2

203



